Bleaching-corrected fluorescence microspectroscopy with nanometer peak position resolution.
نویسندگان
چکیده
Fluorescence microspectroscopy (FMS) with environmentally sensitive dyes provides information about local molecular surroundings at microscopic spatial resolution. Until recently, only probes exhibiting large spectral shifts due to local changes have been used. For filter-based experimental systems, where signal at different wavelengths is acquired sequentially, photostability has been required in addition. Herein, we systematically analyzed our spectral fitting models and bleaching correction algorithms which mitigate both limitations. We showed that careful analysis of data acquired by stochastic wavelength sampling enables nanometer spectral peak position resolution even for highly photosensitive fluorophores. To demonstrate how small spectral shifts and changes in bleaching rates can be exploited, we analyzed vesicles in different lipid phases. Our findings suggest that a wide range of dyes, commonly used in bulk spectrofluorimetry but largely avoided in microspectroscopy due to the above-mentioned restrictions, can be efficiently applied also in FMS.
منابع مشابه
Coexistence of probe conformations in lipid phases-a polarized fluorescence microspectroscopy study.
Several well-established fluorescence methods depend on environment-sensitive probes that report about molecular properties of their local environment. For reliable interpretation of experiments, careful characterization of probes' behavior is required. In this study, bleaching-corrected polarized fluorescence microspectroscopy with nanometer spectral peak position resolution was applied to cha...
متن کاملToward Nanometer-Scale Resolution in Fluorescence Microscopy Using Spectral Self-Interference
We introduce a new fluorescence microscopy technique that maps the axial position of a fluorophore with subnanometer precision. The interference of the emission of fluorophores in proximity to a reflecting surface results in fringes in the fluorescence spectrum that provide a unique signature of the axial position of the fluorophore. The nanometer sensitivity is demonstrated by measuring the he...
متن کاملSub-diffraction imaging on standard microscopes through photobleaching microscopy with non-linear processing.
Visualization of organelles and molecules at nanometer resolution is revolutionizing the biological sciences. However, such technology is still limited for many cell biologists. We present here a novel approach using photobleaching microscopy with non-linear processing (PiMP) for sub-diffraction imaging. Bleaching of fluorophores both within the single-molecule regime and beyond allows visualiz...
متن کاملNear Infrared Microspectroscopy, Fluorescence/Infrared Chemical Imaging and High-Resolution Nuclear Magnetic Resonance Analysi
...............................................................................................1
متن کاملCorrection of diffraction effects in confocal Raman microspectroscopy.
A mathematical approach developed to correct depth profiles of wet-chemically modified polymer films obtained by confocal Raman microscopy is presented which takes into account scattered contributions originated from a diffraction-limited laser focal volume. It is demonstrated that the problem can be described using a linear Fredholm integral equation of the first kind which correlates apparent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 21 21 شماره
صفحات -
تاریخ انتشار 2013